Credit: SEFSC Pascagoula Laboratory; Collection of Brandi Noble, NOAA/NMFS/SEFSCResearchers from Florida State University have found that Red Grouper (Epinephelus morio) dig out and maintain complex structures at the bottom of the sea. They remove sand, exposing hard rocks that are crucial to corals and sponges and the animals that rely on them. The work demonstrates that Red Groupers modify their environment, much as beavers do, creating habitat for many other animals including lobster and commercially important fish.

“Watching these fish dig holes was amazing enough,” says Felicia Coleman, lead researcher, “but then we realised that the sites served to attract mates, beneficial species such as cleaner shrimp that pick parasites and food scraps off the resident fish and a variety of prey species for the Red Grouper. So it’s no surprise that the fish are remarkably sedentary. Why move if everything you need comes to you?”

“The research is incredibly valuable because it demonstrates how interconnected species are in the sea,” says Dr. Susan Williams, a professor at the University of California, Davis. “Red Groupers are the ‘Frank Lloyd Wrights’ of the sea floor because they are critical habitat architects. The species that associate with them include commercially valuable species- such as vermilion snapper, black grouper, and lobsters. If the groupers are overfished, the suite of species that depends on them is likely to suffer.”

Working along the West Florida Shelf, the authors observed the excavating behaviour of the Red Grouper during both their juvenile stage in inshore waters as their adult stage at depths of 100 m. The study serves to document this behaviour and its apparent impact on the biological diversity of the ocean. Their article on the study, “Benthic Habitat Modification through Excavation by Red Grouper, Epinephelus morio, in the Northeastern Gulf of Mexico,” is published in the most recent issue of the journal The Open Fish Science Journal.

Red Grouper (Epinephelus morio) is an economically important species in the reef fish community of the southeastern United States, and especially the Gulf of Mexico. It is relatively common in karst regions of the Gulf.

As juveniles, Red Grouper excavate the limestone bottom of Florida Bay and elsewhere, exposing “solution holes” formed thousands of years ago when sea level was lower, and freshwater dissolved holes in the rock surface. When sea level rose to its present state, these solution holes filled with sediment. By removing the sediment from these holes, Red Grouper restructure the flat bottom into a three dimensional matrix.

Spiny lobsters are among the many species that occupy these excavations, especially during the day when they need refuge from roving predators.

“What are the consequence of overfishing these habitat engineers?” asks co-author Koenig. “You can’t remove an animal that can dig a hole five meters across and several meters deep to reveal the rocky substrate and expect there to be no effect on reef communities. The juveniles of a species closely associated with these pits, vermilion snapper, are extremely abundant around the offshore excavations. It is possible that the engineered habitat is significant as a nursery for this species, which other big fish rely on as food. One could anticipate a domino effect in lost diversity resulting from the loss of Red Grouper-engineered habitat.”

Red Grouper clearly remove sufficient sediment to transform an otherwise two-dimensional area into a three-dimensional structure below the seafloor, providing refuge for themselves and for other organisms. In the process, they expose hard substrate, thus creating settlement sites for corals, sponges, and anemones, allowing the creation of three-dimensional structure above the seafloor as well. Addition of these roles to their contribution as resident top predators suggests that they might have a disproportionately large per capita influence on the ecosystem within which they live.

Red Grouper have been harvested in the United States since the 1880s and are currently the most common grouper species landed in both commercial and recreational fisheries of the Gulf of Mexico.

Excessive fishery removals can and often do have cascading effects in marine communities that ultimately result in the loss of many species. This situation arises when the captured species has a disproportionately large influence on the system within which it lives. The Red Grouper has been shown to be one such species.

Further Reading:
Benthic Habitat Modification through Excavation by Red Grouper, Epinephelus morio, in the Northeastern Gulf of Mexico
pp.1-15 (15) Authors: Felicia C. Coleman, Christopher C. Koenig, Kathryn M. Scanlon, Scott Heppell, Selina Heppell, Margaret W. Miller
doi: 10.2174/1874401X01003010001
Florida State University

What do you think of this news item? Join a discussion.